Sains
Malaysiana 53(9)(2024): 3159-3171
http://doi.org/10.17576/jsm-2024-5309-20
Mechanism of Damnacanthal
Induced Apoptosis in CEM-SS Cell Line
(Mekanisme Apoptosis
Teraruh Damnacanthal dalam Titisan Sel CEM-SS)
BANULATA
GOPALSAMY, SAIFUL YAZAN LATIFAH* & HISYAM ABDUL HAMID
Department
of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti
Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
Received: 9 January 2024/Accepted: 5 August 2024
Abstract
Leukaemia,
is cancer of organs that is responsible to produce blood specifically the
lymphatic system and bone marrow. Due to the harsh effects of currently used
cancer drugs, damnacanthal, an anthraquinone obtained from the roots of Morinda
elliptica is tested as a potential anticancer agent. This study reports on
the participation of the p53, Bcl-2 and Bax in the apoptosis induced by of
damnacanthal, on T-lymphoblastic leukaemia (CEM-SS) cell. Cell viability and
morphology was tested with trypan blue assay, flow cytometry analysis detected
the apoptotic activity of damnacanthal, caspase colorimetric protease assay
tested the Caspase 2, 3, 6, 8, and 9’s involvement and Enzyme-linked
Immunosorbent Assay (ELISA) was carried out to quantify the Human p53, Bcl-2,
and Bax expression levels. Damnacanthal exhibited cytotoxicity at doses 10 and
30 µg/mL after 72 h of incubation. This study reports that damnacanthal
arrested the cell at G2/M phase and initiates the apoptotic activity in the cells
treated with 30 µg/mL of damnacanthal for 72 h through caspase 2 and 6
activation and not caspases 3, 8, and 9. Furthermore, this anthraquinone
induces apoptosis via p53-independent pathway. Damnacanthal also lowered Bcl-2
and increased Bax activity in CEM-SS cell lines. These anticancer properties of
damnacanthal makes it a potential agent to treat T-lymphoblastic leukaemia.
Keywords: Anticancer;
apoptosis; CEM-SS; damnacanthal
Abstrak
Leukemia adalah kanser bagi organ yang bertanggung jawab
menghasilkan darah, terutamanya sistem limfa dan sum sum tulang. Disebabkan
kesan yang buruk oleh ubat kanser yang sedia ada, damnacanthal, salah satu
antrakuinon yang diperoleh daripada akar Morinda elliptica telah diuji
sebagai agen anti kanser yang berpotensi. Penyelidikan ini melaporkan
penglibatan p53, Bcl-2 dan Bax dalam apoptosis aruhan
damnacanthal, ke atas sel T-limfoblastik leukemia (CEM-SS). Kemandirian sel dan
morfologi telah diuji dengan ujian tripan biru, analisis sitometri aliran
mengesan aktiviti apoptosis damnacanthal, ujian protease kolorimetrik caspase
menguji penglibatan Caspase 2, 3, 6, 8 dan 9 dan Ujian Imunosorben Berkaitan
Enzim (ELISA) telah dijalankan untuk mengukur tahap pengekspresan p53, Bcl-2
dan Bax manusia. Damnacanthal menunjukkan sitotoksisiti pada dos 10 dan 30
µg/mL selepas 72 jam pengeraman. Kajian ini melaporkan bahawa damnacanthal
menahan sel pada fasa G2/M dan memulakan aktiviti apoptosis dalam sel yang
dirawat dengan 30 µg/mL damnacanthal selama 72 jam melalui pengaktifan caspase
2 dan 6 dan bukan caspases 3, 8 dan 9. Tambahan pula, antrakuinon ini mendorong
apoptosis melalui laluan bebas p53. Damnacanthal juga menurunkan Bcl-2 dan
meningkatkan aktiviti Bax dalam sel CEM-SS. Sifat antikanser damnacanthal ini
menjadikannya agen berpotensi untuk merawat leukemia T-limfoblastik.
Kata
kunci: Antikanser; apoptosis; CEM-SS; damnacanthal
REFERENCES
Abu,
N., Ali, N.M., Ho, W.Y., Yeap, S.K., Aziz, M.Y. & Alitheen, N.B. 2014.
Damnacanthal: A promising compound as a medicinal anthraquinone. Anti-Cancer
Agents in Medicinal Chemistry 14(5): 750-755. doi:
10.2174/18715206113136660366
Al
Bitar, S. & Gali-Muhtasib, H. 2019. The role of the cyclin dependent kinase
inhibitor p21cip1/waf1 in targeting cancer: Molecular mechanisms and
novel therapeutics. Cancers (Basel) 11(10): 1475. doi:
10.3390/cancers11101475
Ali,
A., Ismail, N., Mackeen, M., Yazan, L., Mohamed, S., Ho, A. & Lajis, N.
2000. Antiviral, cytotoxic and antimicrobial activities of anthraquinones
isolated from the roots of Morinda elliptica. Pharmaceutical Biology 38: 298-301. doi: 10.1076/1388-0209(200009)3841-AFT298
Allen,
R.T., Hunter III, W.J. & Agrawal, D.K. 1997. Morphological and biochemical
characterization and analysis of apoptosis. Journal of Pharmacological and
Toxicological Methods 37(4): 215-228. doi: 10.1016/s1056-8719(97)00033-6
Anand,
U., Dey, A., Chandel, A.K.S., Sanyal, R., Mishra, A., Pandey, D.K., De Falco,
V., Upadhyay, A., Kandimalla, R., Chaudhary, A., Dhanjal, J.K., Dewanjee, S.,
Vallamkondu, J. & Pérez de la Lastra, J.M. 2022. Cancer chemotherapy and
beyond: Current status, drug candidates, associated risks and progress in
targeted therapeutics. Genes & Diseases 10(4): 1367-1401. doi:
10.1016/j.gendis.2022.02.007
Aziz,
M.Y., Omar, A.R., Subramani, T., Yeap, S.K., Ho, W.Y., Ismail, N.H., Ahmad, S.
& Alitheen, N.B. 2014. Damnacanthal is a potent inducer of apoptosis with
anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer
cells. Oncology Letters 7(5): 1479-1484. doi: 10.3892/ol.2014.1898
Basnakian,
A.G. & Moore, C.L. 2021. Apoptotic DNase network: Mutual induction and
cooperation among apoptotic endonucleases. Journal of Cellular and Molecular
Medicine 25(14): 6496-6499. doi: 10.1111/jcmm.16665
Boatright,
K.M. & Salvesen, G.S. 2003. Mechanisms of caspase activation. Current
Opinion in Cell Biology 15: 725-731. doi: 10.1016/j.ceb.2003.10.009
Brown,
G.C. & Borutaite, V. 2008. Regulation of apoptosis by the redox state of
cytochrome c. Biochimica et Biophysica Acta 1777: 877-881. doi:
10.1016/j.bbabio.2008.03.024
Buytaert,
E., Dewaele, M. & Agostinis, P. 2007. Molecular effectors of multiple cell
death pathways initiated by photodynamic therapy. Biochimica et Biophysica
Acta 1776: 86-107. doi: 10.1016/j.bbcan.2007.07.001
Chen,
H.C., Hsieh, W.T., Chang, W.C. & Chung, J.G. 2004. Aloe-emodin induced in
vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60
cells. Food and Chemical Toxicology 42: 1251-1257. doi:
10.1016/j.fct.2004.03.002
Cheng,
A.C., Jian, C.B., Huang, Y.T., Lai, C.S., Hsu, P.C. & Pan, M.H. 2007.
Induction of apoptosis by Uncaria tomentosa through reactive oxygen
species production, cytochrome c release, and caspases activation in human
leukemia cells. Food and Chemical Toxicology 45: 2206-2218. doi:
10.1016/j.fct.2007.05.016
Chipuk,
J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M.
& Green, D.R. 2004. Direct activation of Bax by p53 mediates mitochondrial
membrane permeabilization and apoptosis. Science 303(5660): 1010-1014.
doi: 10.1126/science.1092734
Chong,
T.M., Abdullah, M.A., Fadzillah, N.M., Lai, O.M. & Lajis, N.H. 2005. Jasmonic
acid elicitation of anthraquinones with some associated enzymic and non-enzymic
antioxidant responses in Morinda elliptica. Enzyme and Microbial
Technology 36: 469-477. https://doi.org/10.1016/j.enzmictec.2004.11.002
Dvory-Sobol,
H., Cohen-Noyman, E., Kazanov, D., Figer, A., Birkenfeld, S., Madar-Shapiro,
L., Benamouzig, R. & Arber, N. 2006. Celecoxib leads to G2/M arrest by
induction of p21 and down-regulation of cyclin B1 expression in a
p53-independent manner. European Journal of Cancer 42: 422-426. doi:
10.1016/j.ejca.2005.11.009
Foster,
I. 2008. Cancer: A cell cycle defect. Radiography 14: 144-149.
https://doi.org/10.1016/j.radi.2006.12.001
Fukuhara,
K., Oikawa, S., Hakoda, N., Sakai, Y., Hiraku, Y., Shoda, T., Saito, S.,
Miyata, N., Kawanishi, S. & Okuda, H. 2007. 9-Nitroanthracene derivative as
a precursor of anthraquinone for photodynamic therapy. Bioorganic and
Medicinal Chemistry 15: 3869-3873. doi: 10.1016/j.bmc.2007.03.029
García-Vilas, J.A., Quesadal, A.R. & Medina, M.A. 2015.
Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor
compound against Hep G2 human hepatocellular carcinoma cells. Scientific
Reports 5: 8021. doi: 10.1038/srep08021
GLOBOCAN.
2020.
https://gco.iarc.fr/today/data/factsheets/populations/458-malaysia-fact-sheets.pdf
(Accessed 3 May 2023).
Green,
D.R. 2022. Caspases and their substrates. Cold Spring Harbor Perspectives in
Biology 14: a041012. doi: 10.1101/cshperspect.a041012
Heiser,
D., Labi, V., Erlacher, M. & Villunger, A. 2004. The Bcl-2 protein family
and its role in the development of neoplastic disease. Experimental
Gerontology 39: 1125-1135. doi: 10.1016/j.exger.2004.04.011
Hirazumi,
A., Furusawa, E., Chou, S.C. & Hokama, Y. 1996. Immunomodulation
contributes to the anticancer activity of Morinda citrifolia (Noni)
fruit juice. Proceedings of the Western Pharmacology Society 39: 7-9.
Hounsell,
C. & Fan, Y. 2021. The duality of caspases in cancer, as told through the
fly. International Journal of Molecular Sciences 22(16): 8927. doi:
10.3390/ijms22168927
Huang,
P., Akagawa, K., Yokoyama, Y., Nohara, K., Kano, K. & Morimoto, K. 2007.
T-2 toxin initially activates caspase-2 and induces apoptosis in U937 cells. Toxicology
Letters 170(1): 1-10. doi: 10.1016/j.toxlet.2006.05.017
Hubner,
S., Eam, J.E., Hubner, A. & Jans, D.A. 2006. Laminopathy-inducing lamin A
mutants can induce redistribution of lamin binding proteins into nuclear
aggregates. Experimental Cell Research 312: 171-183. doi:
10.1016/j.yexcr.2005.10.011
Hussar,
P. 2022. Apoptosis regulators Bcl-2 and caspase-3. Encyclopedia 2(4):
1624-1636. https://doi.org/10.3390/encyclopedia2040111
Ismail,
N., Mohamad, H., Mohidin, A. & Lajis, N.H. 2002. Antioxidant activity of
anthraquinones from Morinda elliptica. Natural Product Sciences 8: 48-51.
https://www.researchgate.net/publication/289830185_Antioxidant_activity_of_anthraquinones_from_Morinda_elliptica
Johnson,
L.R. 2006. Apoptosis in the Gastrointestinal Tract. In Physiology of the
Gastrointestinal Tract. 4th ed., edited by Johnson, L.R., Barret, E.K.,
Ghishan, F.K., Merchant, J.L., Said, H.M. & Wood, J.D. Massachusetts:
Academic Press. pp. 345-373.
Katta,
B., Vijayakumar, C., Dutta, S., Dubashi, B. & Nelamangala Ramakrishnaiah,
V.P. 2023. The incidence and severity of patient-reported side effects of
chemotherapy in routine clinical care: A prospective observational study. Cureus 15(4): e38301. doi: 10.7759/cureus.38301
Klaiman,
G., Champagne, N. & LeBlanc, A.C. 2009. Self-activation of caspase-6 in
vitro and in vivo: Caspase-6 activation does not induce cell death
in HEK293T cells. Biochimica et Biophysica Acta 1793: 592-601. doi:
10.1016/j.bbamcr.2008.12.004
Klucar,
J. & al-Rubeai, M. 1997. G2 cell cycle and apoptosis are induced in
Burkitt’s lymphoma cells by anticancer agent oracin. FEBS Letters 400(1): 127-130. doi: 10.1016/s0014-5793(96)01307-5
Latifah, S.Y., Gopalsamy, B., Abdul Rahim, R., Manaf Ali, A. & Haji
Lajis, N. 2022. Ultrastructural and morphological effects in T-lymphoblastic
leukemia CEM-SS cells following treatment with nordamnacanthal and damnacanthal
from roots of Morinda elliptica. Molecules 27(13): 4136. doi: 10.3390/molecules27134136
Latifah, S.Y., Gopalsamy,
B., Abdul Rahim, R., Manaf Ali, A. & Haji Lajis, N. 2021. Anticancer
potential of damnacanthal and nordamnacanthal from Morinda elliptica roots on T-lymphoblastic leukemia cells. Molecules 26(6): 1554. doi:
10.3390/molecules26061554
Lee,
H.Z., Hsu, S.L., Liu, M.C. & Wu, C.H. 2001. Effects and mechanisms of
aloe-emodin on cell death in human lung squamous cell carcinoma. European
Journal of Pharmacology 431: 287-295. doi: 10.1016/s0014-2999(01)01467-4
Li,
R., Li, H., Lan, J., Yang, D., Lin, X., Xu, H., Han, B., Yang, M., Su, B., Liu,
F. & Jiang, W. 2022. Damnacanthal isolated from Morinda species inhibited
ovarian cancer cell proliferation and migration through activating autophagy. Phytomedicine 100(2022): 154084. doi: 10.1016/j.phymed.2022.154084
Nor
Hadiani, I., Ali, A.M., Aimi, N., Kitajima, M., Takayama, H. & Nordin, H.L.
1997. Anthraquinones from Morinda elliptica. Phytochemistry 45:
1723-1725. https://doi.org/10.1016/S0031-9422(97)00252-5
Nualsanit, T., Rojanapanthu, P., Gritsanapan, W., Lee, S.H., Lawson, D.
& Baek, S.J. 2012. Damnacanthal, a noni component, exhibits antitumorigenic
activity in human colorectal cancer cells. Journal of Nutritional
Biochemistry 23: 915-923. doi: 10.1016/j.jnutbio.2011.04.017
Park,
C., Shin, H.J., Kim, G.Y., Kwon, T.K., Name, T.J., Kim, S.K., Cheong, J., Choi,
I.W. & Choi, Y.H. 2008. Induction of apoptosis by streptochlorin isolated
from Streptomyces sp. in human leukaemic U937 cells. Toxicology in
Vitro 22: 1573-1581. doi: 10.1016/j.tiv.2008.06.010
Parrish,
A.B., Freel, C.D. & Kornbluth, S. 2013. Cellular mechanisms controlling
caspase activation and function. Cold Spring Harbor Perspectives in Biology 5(6): 008672. doi: 10.1101/cshperspect.a008672
Povea-Cabello,
S., Oropesa-Ávila, M., de la Cruz-Ojeda, P., Villanueva-Paz, M., de la Mata,
M., Suárez-Rivero, J.M., Álvarez-Córdoba, M., Villalón-García, I., Cotán, D.,
Ybot-González, P. & Sánchez-Alcázar, J.A. 2017. Dynamic reorganization of
the cytoskeleton during apoptosis: The two coffins hypothesis. International
Journal of Molecular Sciences 18(11): 2393.
https://doi.org/10.3390/ijms18112393
Prasad,
V., Chandele, A., Jagtap, J.C., Kumar, S. & Shastry, P. 2006. ROS-triggered
caspase 2 activation and feedback amplification loop in β-carotene-induced
apoptosis. Free Radical Biology & Medicine 41: 431-442. doi:
10.1016/j.freeradbiomed.2006.03.009
Rajendran,
M., Inbaraj, J.J., Gandhidasan, R. & Murugesan, R. 2004. Photodynamic
action of damnacanthal and nordamnacanthal. Journal of Photochemistry and
Photobiology A: Chemistry 162: 615-623.
https://doi.org/10.1016/S1010-6030(03)00415-5
Schonthal,
A.H., Mueller, S. & Cadenas, E. 2000. Redox regulation of p21, role of
reactive oxygen and nitrogen species in cell cycle progression. In Antioxidant
and Redox Regulation, edited by Sen, C.K., Sies, H. & Baeuerle, P.A.
Massachusetts: Academic Press. pp. 311-336.
Schutte,
B., Henfling, M., Kolgen, W., Bouman, M., Meex, S., Leers, M.P.G., Nap, M.,
Bjorklund, V., Bjorklund, P., Bjorklund, B., Lane, E.B., Omary, M.B., Jornvall,
H. & Ramaekers, F.C.S. 2004. Keratin 8/18 breakdown and reorganization
during apoptosis. Experimental Cell Research 297: 11-26. doi:
10.1016/j.yexcr.2004.02.019
Shaghayegh, G., Alabsi, A.M., Ali-Saeed, R., Ali, A.M., Vincent-Chong,
V.K., Ismail, N.H., Choon, Y.F. & Zain, R.B. 2017. Effects of damnacanthal
and nordamnacanthal on proliferation, apoptosis, and migration of oral squamous
cell carcinoma cells. Asian Pacific Journal of Cancer Prevention 18:
3333-3341. doi: 10.22034/APJCP.2017.18.12.3333
Shami,
A.M.M. 2018. Antibacterial and antioxidant properties of anthraquinones
fractions from Morinda citrifolia fruit. Journal of Reports in
Pharmaceutical Sciences 7: 379-388.
https://www.researchgate.net/publication/329487739_Antibacterial_and_Antioxidant_Properties_of_Anthraquinones_Fractions _from_Morinda_Citrifolia_Fruit
(Accessed on 6 June 2023).
Shieh,
D.E., Chen, Y.Y., Yen, M.H., Chiang, L.C. & Lin, C.C. 2004. Emodin-induced
apoptosis through p53-dependent pathway in human hepatoma cells. Life
Sciences 74: 2279-2290. doi: 10.1016/j.lfs.2003.09.060
Siegel,
R.L., Miller, K.D., Wagle, N.S. & Jemal, A. 2023. Cancer statistics. A
Cancer Journal for Clinicians 73(1): 17-48. doi:10.3322/caac.21763
Silva,
G.M., Saavedra, V., Ianez, R.C.F., Sousa, E.A., Gomes, N., Kelner, N., Nagai,
M.A., Kowalski, L.P., Soares, F.A., Lourenço, S.V. & Coutinho-Camillo, C.M.
2019. Apoptotic signaling in salivary mucoepidermoid carcinoma. Head and
Neck 41: 2904-2913. doi: 10.1002/hed.25763
Stennicke,
H.R. & Salvesen, G.S. 1998. Properties of the caspases. Biochimica et
Biophysica Acta 1387: 17-31.
Su,
Y.T., Chang, H.L., Shyue, S.K. & Hsu, S.L. 2005. Emodin induces apoptosis
in human lung adenocarcinoma cells through a reactive oxygen species-dependent
mitochondrial signaling pathway. Biochemical Pharmacology 70: 229-241.
doi: 10.1016/j.bcp.2005.04.026
Tamura,
Y., Simizu, S. & Osada, H. 2004. The phosphorylation status and
anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase
2A on the mitochondria. FEBS Letters 569: 249-255. doi:
10.1016/j.febslet.2004.06.003
Tseng,
C.J., Wang, Y.J., Liang, Y.C., Jeng, J.H., Lee, W.S., Lin, J.K., Chen, C.H.,
Liu, I.C. & Ho, Y.S. 2002. Microtubule damaging agents induce apoptosis in
HL 60 cells and G2/M cell cycle arrest in HT29 cells. Toxicology 175:
123-142. doi: 10.1016/s0300-483x(02)00073-2
Van
Opdenbosch, N. & Lamkanfi, M. 2019. Caspases in cell death, inflammation,
and disease. Immunity 50(6): 1352-1364. doi: 10.1016/j.immuni.2019.05.020
Wang,
H., Guo, M., Wei, H. & Chen, Y. 2023. Targeting p53 pathways: Mechanisms,
structures, and advances in therapy. Signal Transduction and Targeted
Therapy 8(1): 92. https://doi.org/10.1038/s41392-023-01347-1
Wei,
H., Qu, L., Dai, S., Li, Y., Wang, H., Feng, Y., Chen, X., Jiang, L., Guo, M.,
Li, J., Chen, Z., Chen, L, Zhang, Y. & Chen, Y. 2021. Structural insight
into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nature
Communications 12: 2280. https://doi.org/10.1038/s41467-021-22655-6
World
Health Organization (WHO). 2021. Assessing national capacity for the prevention
and control of noncommunicable diseases: Report of the 2019 global survey.
World Health Organization. https://apps.who.int/iris/handle/10665/331452
Woradulayapinij,
W., Pothiluk, A., Nualsanit, T., Yimsoo, T., Yingmema, W., Rojanapanthu, P.,
Hong, Y., Baek, S.J. & Treesuppharat, W. 2022. Acute oral toxicity of
damnacanthal and its anticancer activity against colorectal tumorigenesis. Toxicology
Reports 9: 1968-1976. doi: 10.1016/j.toxrep.2022.10.015
Zhivotovsky,
B. & Orenius, R. 2005. Caspase-2 function in response to DNA damage. Biochemical
and Biophysical Research Communications 331: 859-867. doi:
10.1016/j.bbrc.2005.03.191
*Corresponding
author; email: latifahsy@upm.edu.my
|