Sains Malaysiana 53(9)(2024): 3159-3171

http://doi.org/10.17576/jsm-2024-5309-20

 

Mechanism of Damnacanthal Induced Apoptosis in CEM-SS Cell Line

(Mekanisme Apoptosis Teraruh Damnacanthal dalam Titisan Sel CEM-SS)

 

BANULATA GOPALSAMY, SAIFUL YAZAN LATIFAH* & HISYAM ABDUL HAMID

 

Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Received: 9 January 2024/Accepted: 5 August 2024

 

Abstract

Leukaemia, is cancer of organs that is responsible to produce blood specifically the lymphatic system and bone marrow. Due to the harsh effects of currently used cancer drugs, damnacanthal, an anthraquinone obtained from the roots of Morinda elliptica is tested as a potential anticancer agent. This study reports on the participation of the p53, Bcl-2 and Bax in the apoptosis induced by of damnacanthal, on T-lymphoblastic leukaemia (CEM-SS) cell. Cell viability and morphology was tested with trypan blue assay, flow cytometry analysis detected the apoptotic activity of damnacanthal, caspase colorimetric protease assay tested the Caspase 2, 3, 6, 8, and 9’s involvement and Enzyme-linked Immunosorbent Assay (ELISA) was carried out to quantify the Human p53, Bcl-2, and Bax expression levels. Damnacanthal exhibited cytotoxicity at doses 10 and 30 µg/mL after 72 h of incubation. This study reports that damnacanthal arrested the cell at G2/M phase and initiates the apoptotic activity in the cells treated with 30 µg/mL of damnacanthal for 72 h through caspase 2 and 6 activation and not caspases 3, 8, and 9. Furthermore, this anthraquinone induces apoptosis via p53-independent pathway. Damnacanthal also lowered Bcl-2 and increased Bax activity in CEM-SS cell lines. These anticancer properties of damnacanthal makes it a potential agent to treat T-lymphoblastic leukaemia.

 

Keywords: Anticancer; apoptosis; CEM-SS; damnacanthal

 

Abstrak

Leukemia adalah kanser bagi organ yang bertanggung jawab menghasilkan darah, terutamanya sistem limfa dan sum sum tulang. Disebabkan kesan yang buruk oleh ubat kanser yang sedia ada, damnacanthal, salah satu antrakuinon yang diperoleh daripada akar Morinda elliptica telah diuji sebagai agen anti kanser yang berpotensi. Penyelidikan ini melaporkan penglibatan p53, Bcl-2 dan Bax dalam apoptosis aruhan damnacanthal, ke atas sel T-limfoblastik leukemia (CEM-SS). Kemandirian sel dan morfologi telah diuji dengan ujian tripan biru, analisis sitometri aliran mengesan aktiviti apoptosis damnacanthal, ujian protease kolorimetrik caspase menguji penglibatan Caspase 2, 3, 6, 8 dan 9 dan Ujian Imunosorben Berkaitan Enzim (ELISA) telah dijalankan untuk mengukur tahap pengekspresan p53, Bcl-2 dan Bax manusia. Damnacanthal menunjukkan sitotoksisiti pada dos 10 dan 30 µg/mL selepas 72 jam pengeraman. Kajian ini melaporkan bahawa damnacanthal menahan sel pada fasa G2/M dan memulakan aktiviti apoptosis dalam sel yang dirawat dengan 30 µg/mL damnacanthal selama 72 jam melalui pengaktifan caspase 2 dan 6 dan bukan caspases 3, 8 dan 9. Tambahan pula, antrakuinon ini mendorong apoptosis melalui laluan bebas p53. Damnacanthal juga menurunkan Bcl-2 dan meningkatkan aktiviti Bax dalam sel CEM-SS. Sifat antikanser damnacanthal ini menjadikannya agen berpotensi untuk merawat leukemia T-limfoblastik.

 

Kata kunci: Antikanser; apoptosis; CEM-SS; damnacanthal

 

REFERENCES

Abu, N., Ali, N.M., Ho, W.Y., Yeap, S.K., Aziz, M.Y. & Alitheen, N.B. 2014. Damnacanthal: A promising compound as a medicinal anthraquinone. Anti-Cancer Agents in Medicinal Chemistry 14(5): 750-755. doi: 10.2174/18715206113136660366

Al Bitar, S. & Gali-Muhtasib, H. 2019. The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting cancer: Molecular mechanisms and novel therapeutics. Cancers (Basel) 11(10): 1475. doi: 10.3390/cancers11101475

Ali, A., Ismail, N., Mackeen, M., Yazan, L., Mohamed, S., Ho, A. & Lajis, N. 2000. Antiviral, cytotoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharmaceutical Biology 38: 298-301. doi: 10.1076/1388-0209(200009)3841-AFT298

Allen, R.T., Hunter III, W.J. & Agrawal, D.K. 1997. Morphological and biochemical characterization and analysis of apoptosis. Journal of Pharmacological and Toxicological Methods 37(4): 215-228. doi: 10.1016/s1056-8719(97)00033-6

Anand, U., Dey, A., Chandel, A.K.S., Sanyal, R., Mishra, A., Pandey, D.K., De Falco, V., Upadhyay, A., Kandimalla, R., Chaudhary, A., Dhanjal, J.K., Dewanjee, S., Vallamkondu, J. & Pérez de la Lastra, J.M. 2022. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases 10(4): 1367-1401. doi: 10.1016/j.gendis.2022.02.007

Aziz, M.Y., Omar, A.R., Subramani, T., Yeap, S.K., Ho, W.Y., Ismail, N.H., Ahmad, S. & Alitheen, N.B. 2014. Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer cells. Oncology Letters 7(5): 1479-1484. doi: 10.3892/ol.2014.1898

Basnakian, A.G. & Moore, C.L. 2021. Apoptotic DNase network: Mutual induction and cooperation among apoptotic endonucleases. Journal of Cellular and Molecular Medicine 25(14): 6496-6499. doi: 10.1111/jcmm.16665

Boatright, K.M. & Salvesen, G.S. 2003. Mechanisms of caspase activation. Current Opinion in Cell Biology 15: 725-731. doi: 10.1016/j.ceb.2003.10.009

Brown, G.C. & Borutaite, V. 2008. Regulation of apoptosis by the redox state of cytochrome c. Biochimica et Biophysica Acta 1777: 877-881. doi: 10.1016/j.bbabio.2008.03.024

Buytaert, E., Dewaele, M. & Agostinis, P. 2007. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochimica et Biophysica Acta 1776: 86-107. doi: 10.1016/j.bbcan.2007.07.001

Chen, H.C., Hsieh, W.T., Chang, W.C. & Chung, J.G. 2004. Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food and Chemical Toxicology 42: 1251-1257. doi: 10.1016/j.fct.2004.03.002

Cheng, A.C., Jian, C.B., Huang, Y.T., Lai, C.S., Hsu, P.C. & Pan, M.H. 2007. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells. Food and Chemical Toxicology 45: 2206-2218. doi: 10.1016/j.fct.2007.05.016

Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M. & Green, D.R. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660): 1010-1014. doi: 10.1126/science.1092734

Chong, T.M., Abdullah, M.A., Fadzillah, N.M., Lai, O.M. & Lajis, N.H. 2005. Jasmonic acid elicitation of anthraquinones with some associated enzymic and non-enzymic antioxidant responses in Morinda elliptica. Enzyme and Microbial Technology 36: 469-477. https://doi.org/10.1016/j.enzmictec.2004.11.002

Dvory-Sobol, H., Cohen-Noyman, E., Kazanov, D., Figer, A., Birkenfeld, S., Madar-Shapiro, L., Benamouzig, R. & Arber, N. 2006. Celecoxib leads to G2/M arrest by induction of p21 and down-regulation of cyclin B1 expression in a p53-independent manner. European Journal of Cancer 42: 422-426. doi: 10.1016/j.ejca.2005.11.009

Foster, I. 2008. Cancer: A cell cycle defect. Radiography 14: 144-149. https://doi.org/10.1016/j.radi.2006.12.001

Fukuhara, K., Oikawa, S., Hakoda, N., Sakai, Y., Hiraku, Y., Shoda, T., Saito, S., Miyata, N., Kawanishi, S. & Okuda, H. 2007. 9-Nitroanthracene derivative as a precursor of anthraquinone for photodynamic therapy. Bioorganic and Medicinal Chemistry 15: 3869-3873. doi: 10.1016/j.bmc.2007.03.029

García-Vilas, J.A., Quesadal, A.R. & Medina, M.A. 2015. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells. Scientific Reports 5: 8021. doi: 10.1038/srep08021

GLOBOCAN. 2020. https://gco.iarc.fr/today/data/factsheets/populations/458-malaysia-fact-sheets.pdf (Accessed 3 May 2023).

Green, D.R. 2022. Caspases and their substrates. Cold Spring Harbor Perspectives in Biology 14: a041012. doi: 10.1101/cshperspect.a041012

Heiser, D., Labi, V., Erlacher, M. & Villunger, A. 2004. The Bcl-2 protein family and its role in the development of neoplastic disease. Experimental Gerontology 39: 1125-1135. doi: 10.1016/j.exger.2004.04.011

Hirazumi, A., Furusawa, E., Chou, S.C. & Hokama, Y. 1996. Immunomodulation contributes to the anticancer activity of Morinda citrifolia (Noni) fruit juice. Proceedings of the Western Pharmacology Society 39: 7-9.

Hounsell, C. & Fan, Y. 2021. The duality of caspases in cancer, as told through the fly. International Journal of Molecular Sciences 22(16): 8927. doi: 10.3390/ijms22168927

Huang, P., Akagawa, K., Yokoyama, Y., Nohara, K., Kano, K. & Morimoto, K. 2007. T-2 toxin initially activates caspase-2 and induces apoptosis in U937 cells. Toxicology Letters 170(1): 1-10. doi: 10.1016/j.toxlet.2006.05.017

Hubner, S., Eam, J.E., Hubner, A. & Jans, D.A. 2006. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates. Experimental Cell Research 312: 171-183. doi: 10.1016/j.yexcr.2005.10.011

Hussar, P. 2022. Apoptosis regulators Bcl-2 and caspase-3. Encyclopedia 2(4): 1624-1636. https://doi.org/10.3390/encyclopedia2040111

Ismail, N., Mohamad, H., Mohidin, A. & Lajis, N.H. 2002. Antioxidant activity of anthraquinones from Morinda elliptica. Natural Product Sciences 8: 48-51. https://www.researchgate.net/publication/289830185_Antioxidant_activity_of_anthraquinones_from_Morinda_elliptica

Johnson, L.R. 2006. Apoptosis in the Gastrointestinal Tract. In Physiology of the Gastrointestinal Tract. 4th ed., edited by Johnson, L.R., Barret, E.K., Ghishan, F.K., Merchant, J.L., Said, H.M. & Wood, J.D. Massachusetts: Academic Press. pp. 345-373.

Katta, B., Vijayakumar, C., Dutta, S., Dubashi, B. & Nelamangala Ramakrishnaiah, V.P. 2023. The incidence and severity of patient-reported side effects of chemotherapy in routine clinical care: A prospective observational study. Cureus 15(4): e38301. doi: 10.7759/cureus.38301

Klaiman, G., Champagne, N. & LeBlanc, A.C. 2009. Self-activation of caspase-6 in vitro and in vivo: Caspase-6 activation does not induce cell death in HEK293T cells. Biochimica et Biophysica Acta 1793: 592-601. doi: 10.1016/j.bbamcr.2008.12.004

Klucar, J. & al-Rubeai, M. 1997. G2 cell cycle and apoptosis are induced in Burkitt’s lymphoma cells by anticancer agent oracin. FEBS Letters 400(1): 127-130. doi: 10.1016/s0014-5793(96)01307-5

Latifah, S.Y., Gopalsamy, B., Abdul Rahim, R., Manaf Ali, A. & Haji Lajis, N. 2022. Ultrastructural and morphological effects in T-lymphoblastic leukemia CEM-SS cells following treatment with nordamnacanthal and damnacanthal from roots of Morinda elliptica. Molecules 27(13): 4136. doi: 10.3390/molecules27134136

Latifah, S.Y., Gopalsamy, B., Abdul Rahim, R., Manaf Ali, A. & Haji Lajis, N. 2021. Anticancer potential of damnacanthal and nordamnacanthal from Morinda elliptica roots on T-lymphoblastic leukemia cells. Molecules 26(6): 1554. doi: 10.3390/molecules26061554

Lee, H.Z., Hsu, S.L., Liu, M.C. & Wu, C.H. 2001. Effects and mechanisms of aloe-emodin on cell death in human lung squamous cell carcinoma. European Journal of Pharmacology 431: 287-295. doi: 10.1016/s0014-2999(01)01467-4

Li, R., Li, H., Lan, J., Yang, D., Lin, X., Xu, H., Han, B., Yang, M., Su, B., Liu, F. & Jiang, W. 2022. Damnacanthal isolated from Morinda species inhibited ovarian cancer cell proliferation and migration through activating autophagy. Phytomedicine 100(2022): 154084. doi: 10.1016/j.phymed.2022.154084

Nor Hadiani, I., Ali, A.M., Aimi, N., Kitajima, M., Takayama, H. & Nordin, H.L. 1997. Anthraquinones from Morinda elliptica. Phytochemistry 45: 1723-1725. https://doi.org/10.1016/S0031-9422(97)00252-5

Nualsanit, T., Rojanapanthu, P., Gritsanapan, W., Lee, S.H., Lawson, D. & Baek, S.J. 2012. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. Journal of Nutritional Biochemistry 23: 915-923. doi: 10.1016/j.jnutbio.2011.04.017

Park, C., Shin, H.J., Kim, G.Y., Kwon, T.K., Name, T.J., Kim, S.K., Cheong, J., Choi, I.W. & Choi, Y.H. 2008. Induction of apoptosis by streptochlorin isolated from Streptomyces sp. in human leukaemic U937 cells. Toxicology in Vitro 22: 1573-1581. doi: 10.1016/j.tiv.2008.06.010

Parrish, A.B., Freel, C.D. & Kornbluth, S. 2013. Cellular mechanisms controlling caspase activation and function. Cold Spring Harbor Perspectives in Biology 5(6): 008672. doi: 10.1101/cshperspect.a008672

Povea-Cabello, S., Oropesa-Ávila, M., de la Cruz-Ojeda, P., Villanueva-Paz, M., de la Mata, M., Suárez-Rivero, J.M., Álvarez-Córdoba, M., Villalón-García, I., Cotán, D., Ybot-González, P. & Sánchez-Alcázar, J.A. 2017. Dynamic reorganization of the cytoskeleton during apoptosis: The two coffins hypothesis. International Journal of Molecular Sciences 18(11): 2393. https://doi.org/10.3390/ijms18112393

Prasad, V., Chandele, A., Jagtap, J.C., Kumar, S. & Shastry, P. 2006. ROS-triggered caspase 2 activation and feedback amplification loop in β-carotene-induced apoptosis. Free Radical Biology & Medicine 41: 431-442. doi: 10.1016/j.freeradbiomed.2006.03.009

Rajendran, M., Inbaraj, J.J., Gandhidasan, R. & Murugesan, R. 2004. Photodynamic action of damnacanthal and nordamnacanthal. Journal of Photochemistry and Photobiology A: Chemistry 162: 615-623. https://doi.org/10.1016/S1010-6030(03)00415-5

Schonthal, A.H., Mueller, S. & Cadenas, E. 2000. Redox regulation of p21, role of reactive oxygen and nitrogen species in cell cycle progression. In Antioxidant and Redox Regulation, edited by Sen, C.K., Sies, H. & Baeuerle, P.A. Massachusetts: Academic Press. pp. 311-336.

Schutte, B., Henfling, M., Kolgen, W., Bouman, M., Meex, S., Leers, M.P.G., Nap, M., Bjorklund, V., Bjorklund, P., Bjorklund, B., Lane, E.B., Omary, M.B., Jornvall, H. & Ramaekers, F.C.S. 2004. Keratin 8/18 breakdown and reorganization during apoptosis. Experimental Cell Research 297: 11-26. doi: 10.1016/j.yexcr.2004.02.019

Shaghayegh, G., Alabsi, A.M., Ali-Saeed, R., Ali, A.M., Vincent-Chong, V.K., Ismail, N.H., Choon, Y.F. & Zain, R.B. 2017. Effects of damnacanthal and nordamnacanthal on proliferation, apoptosis, and migration of oral squamous cell carcinoma cells. Asian Pacific Journal of Cancer Prevention 18: 3333-3341. doi: 10.22034/APJCP.2017.18.12.3333

Shami, A.M.M. 2018. Antibacterial and antioxidant properties of anthraquinones fractions from Morinda citrifolia fruit. Journal of Reports in Pharmaceutical Sciences 7: 379-388. https://www.researchgate.net/publication/329487739_Antibacterial_and_Antioxidant_Properties_of_Anthraquinones_Fractions _from_Morinda_Citrifolia_Fruit (Accessed on 6 June 2023).

Shieh, D.E., Chen, Y.Y., Yen, M.H., Chiang, L.C. & Lin, C.C. 2004. Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sciences 74: 2279-2290. doi: 10.1016/j.lfs.2003.09.060

Siegel, R.L., Miller, K.D., Wagle, N.S. & Jemal, A. 2023. Cancer statistics. A Cancer Journal for Clinicians 73(1): 17-48. doi:10.3322/caac.21763

Silva, G.M., Saavedra, V., Ianez, R.C.F., Sousa, E.A., Gomes, N., Kelner, N., Nagai, M.A., Kowalski, L.P., Soares, F.A., Lourenço, S.V. & Coutinho-Camillo, C.M. 2019. Apoptotic signaling in salivary mucoepidermoid carcinoma. Head and Neck 41: 2904-2913. doi: 10.1002/hed.25763

Stennicke, H.R. & Salvesen, G.S. 1998. Properties of the caspases. Biochimica et Biophysica Acta 1387: 17-31.

Su, Y.T., Chang, H.L., Shyue, S.K. & Hsu, S.L. 2005. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochemical Pharmacology 70: 229-241. doi: 10.1016/j.bcp.2005.04.026

Tamura, Y., Simizu, S. & Osada, H. 2004. The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Letters 569: 249-255. doi: 10.1016/j.febslet.2004.06.003

Tseng, C.J., Wang, Y.J., Liang, Y.C., Jeng, J.H., Lee, W.S., Lin, J.K., Chen, C.H., Liu, I.C. & Ho, Y.S. 2002. Microtubule damaging agents induce apoptosis in HL 60 cells and G2/M cell cycle arrest in HT29 cells. Toxicology 175: 123-142. doi: 10.1016/s0300-483x(02)00073-2

Van Opdenbosch, N. & Lamkanfi, M. 2019. Caspases in cell death, inflammation, and disease. Immunity 50(6): 1352-1364. doi: 10.1016/j.immuni.2019.05.020

Wang, H., Guo, M., Wei, H. & Chen, Y. 2023. Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduction and Targeted Therapy 8(1): 92. https://doi.org/10.1038/s41392-023-01347-1

Wei, H., Qu, L., Dai, S., Li, Y., Wang, H., Feng, Y., Chen, X., Jiang, L., Guo, M., Li, J., Chen, Z., Chen, L, Zhang, Y. & Chen, Y. 2021. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nature Communications 12: 2280. https://doi.org/10.1038/s41467-021-22655-6

World Health Organization (WHO). 2021. Assessing national capacity for the prevention and control of noncommunicable diseases: Report of the 2019 global survey. World Health Organization. https://apps.who.int/iris/handle/10665/331452 

Woradulayapinij, W., Pothiluk, A., Nualsanit, T., Yimsoo, T., Yingmema, W., Rojanapanthu, P., Hong, Y., Baek, S.J. & Treesuppharat, W. 2022. Acute oral toxicity of damnacanthal and its anticancer activity against colorectal tumorigenesis. Toxicology Reports 9: 1968-1976. doi: 10.1016/j.toxrep.2022.10.015

Zhivotovsky, B. & Orenius, R. 2005. Caspase-2 function in response to DNA damage. Biochemical and Biophysical Research Communications 331: 859-867. doi: 10.1016/j.bbrc.2005.03.191

 

*Corresponding author; email: latifahsy@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

previous next